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Abstract

A new type of interface acoustic waves (IAW) is presented, for single-crystal orthotropic twins bonded symmetrically
along a plane containing only one common crystallographic axis. The effective boundary conditions show that the
waves are linearly polarized at the interface, either transversally or longitudinally. Then the secular equation is obtained
in full analytical form using new relationships for the displacement—traction quadrivector at the interface. For gallium
arsenide and for silicon, it is found that the IAWs with transverse (resp. longitudinal) polarization at the interface are of
the Stoneley (resp. leaky) type.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The possibilities of existence of Stoneley waves propagating at the interface of two welded half-spaces
are quite restricted, especially when the semi-infinite bodies are made of dissimilar crystals. For example,
Owen (1964) famously studied 900 combinations of isotropic materials and found only 31 pairs supporting
Stoneley waves. Similar conclusions are also reached when the materials are anisotropic. In general, the
existence of an interfacial Stoneley wave is highly sensitive to the differences in material parameters for each
medium, in particular to the difference in shear wave speeds (Chadwick and Currie, 1974).

The situation is somewhat more favorable when the half-spaces are made of misoriented but identical
crystals. For instance, Stoneley waves were found to exist for any angle of misorientation and for prop-
agation along the twist-angle bisectrix in the case of some hypothetical crystal by Lim and Musgrave
(1970), copper by Tholén (1984), gallium arsenide by Barnett et al. (1985), or silicon by Mozhaev et al.
(1998); they also exist for 180° domain boundaries of barium titanate or quartz (Mozhaev and Weihnacht,
1996, 1997), for propagation in any direction in the interface plane. In these articles, the interface is normal
to a crystallographic axis which is itself common to each half-space.
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Fig. 1. Twinned crystal.

Now consider the interface described in Fig. 1, where the upper and lower half-spaces are made of the
same crystal with at least rhombic symmetry and with misoriented crystallographic axes X and Y (repre-
sented on the figure making an angle +60 with the interface and its normal) and common crystallographic
axis Z (normal to the plane of the figure). This geometry of chevron or “herringbone” pattern might be
encountered in crystals subjected to a gliding twinning plane, or to the formation of conjugate kink bands
through compression. Hussain and Ogden (2000) recently proposed a theoretical simulation of the plastic
deformation associated with the twinning of crystals, with a possible exploitation in non-destructive testing
of materials. Another way of producing such twins would be the following. Consider an infinite crystal with
orthotropic or higher symmetry; cut it in two halves so that the plane interface contains one crystallo-
graphic axis (say x3;) and makes an angle 6 with another crystallographic axis (say x;), see Fig. 2(a); then
rotate one half-space by 180° about the normal to the interface, see Fig. 2(b); finally rebond the half-spaces,
see Fig. 2(c). A thorough review article by Gosele and Tong (1998) presents several experimental proce-
dures of wafer bonding (also known as direct bonding or fusion bonding or “gluing without glue’’) and its
numerous applications, not only for silicon-based sensors and actuators but also in microsystem tech-
nologies, non-linear optics, light-emitting diodes, etc. using gallium arsenide, quartz, or sapphire.

When the boundary conditions take the symmetries of the problem into consideration then the interface
wave is found to be linearly polarized at the interface, either longitudinally or transversally. Once these
effective boundary conditions are established in Section 2 (and Appendix A), two corresponding secular
equations are derived explicitly in Section 3 as cubics in the squared wave speed. The results are illustrated
graphically for gallium arsenide and for silicon. For these materials, it turns out that one of the secu-
lar equations corresponds to a non-physical supersonic leaky interface wave, and that the other corre-
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Fig. 2. Cutting, rotating, and bonding of a rhombic crystal.

sponds to a subsonic interface acoustic wave (IAW) having the characteristics of a Stoneley wave: decay
with increasing distance from the interface, speed larger than that of the corresponding surface Rayleigh
wave.

2. Effective boundary conditions

Consider Stoneley waves traveling with speed v and wave number £ at the interface of a bimaterial made
of two perfectly bonded orthotropic media. Both half-spaces are made of the same crystal (mass density p,
non-zero reduced compliances s}, s5,, 8,, Sy, 855, Sgg)- However, the normal to the interface Ox, and the
direction of propagation Ox; are inclined at an angle 6 to the crystallographic axes Oy and Ox of the lower
(x2 > 0) half-space and at an angle —6 for the upper (x, < 0) half-space.

In the lower half-space, the strain-stress relation is €; = sy0; where the reduced compliances s; are
given by (see for instance Ting, 2000 or Destrade, 2003),

s11 = 8}, cos* 0+ (25, + s} ) cos? O'sin” 0 + s5, sin* 0,

52 = 5y, cos* 0 + (25, + s} ) cos? Osin® 0 + s}, sin* 0,

12 = ), + (8], + shy — 25, — sk) cos Osin” 0, 2
S66 = S+ 4(s], + 55y — 25, — s) cos Osin” 0, '
S16 = [25), sin” 0 — 25/, cos? 0 + (25}, + sj4) (cos® 0 — sin® 0)] cos O'sin 0,
$26 = 255, c08? 0 — 25/ sin® 0 — (25, + s, ) (cos® 0 — sin” 0)] cos O'sin 0.

When the mechanical displacement u(x;, x,,x3,¢) is modelled as a linear combination of the partial modes

gl+po—t)J (say), then the in-plane strain decouples from the anti-plane strain, and so does in-plane stress

from anti-plane stress (Stroh, 1962); also, p is a root of the characteristic polynomial,

w4p* — 2w3p° + wp? — 201p + wy = 0, (2.2)

where the (real) coefficients w; are given in terms of the reduced compliances and of X = p1? by (Destrade,
2003),
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W4 = 811, W3 = S16,
2 2
Wy = Se6 + 2512 — [511 (S22 + S66) — 5T, — 816X s

W1 = §26 + [S16(522 — S12) + S26 (511 — $12)|X,

(2.3)

St Sz Sie
2 2 2
Wy = 5 — [s2(511 + S66) — 57, — S5|X + 512 S22 S26 [X7

S16 S26  Se6

In the upper half-space, 6 is changed to its opposite so that by (2.1), sy, $22, 512, S¢¢ remain unchanged
whilst 516 and sp¢ change signs. Consequently, by (2.3) the characteristic polynomial in the upper half-space
is

wsp* + 203p° + wap* + 201p + wy = 0. (2.4)

It follows that if p is a root of the characteristic polynomial (2.2) for the lower half-space, then —p is a root
of the characteristic polynomial (2.4) for the upper half-space.

As a consequence of these properties (change of sign across the interface for sy, 526, and for the p’s), the
following effective boundary conditions apply at x, = 0 (see Appendix A),

Uy = 0y = O, or u; =01 = 0. (25)

Following Mozhaev et al. (1998), interface acoustic waves satisfying the first condition (2.5); are denoted
IAWI1, and those satisfying the second condition (2.5), are denoted IAW?2. The polarization of the waves at
the interface is linear: transverse for IAWI1 and longitudinal for IAW2. Note that Mozhaev and collabo-
rators obtained similar effective boundary conditions for other types of twin boundaries (180° ferroelectric
domain boundary in tetragonal single-crystals with crystallographic propagation direction (Mozhaev and
Weihnacht, 1995, 1996); Dauphiné twins in quartz with boundary coincident with the YZ mirror plane and
propagation along the Y direction (Mozhaev and Weihnacht, 1997); twisted single-crystal cubic wafers with
basal plane boundary and propagation along the twist-angle bisectrix (Mozhaev and Tokmakova, 1994;
Mozhaev et al., 1998)).

3. Equations of motion and explicit secular equations

The equations of motion in the lower half-space are written as a first-order homogeneous differential
system for the in-plane displacement-traction vector,

E(kxy) = [Un(kxa), U (ko) tia (ko) 1o ()] (3.1)
where the U; and ¢, are defined by

ui(x1,x2,x3,8) = lJi(kxz)eik<x""’>, i (X1, X2, X3, 1) = ikt (o )&l (3.2)
Explicitly, the system is given by (Destrade, 2001),

—Te =1 nes  my
- 0 Ny N

X—n 0 —r¢ —n
0 X -1 0

g =iN¢, N= (3.3)

where X = pv? and (Ting, 2002)
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1 S1i 1 |sy Y
=—, Bn=——, n;=— 7. 3.4
1 S11 S11 s s sy 34
Note that in passing from the lower half-space to the upper half-space, only r¢ and nys change signs.
Ting (in press) proved that for any positive or negative integer n, the matrix N” has the structure,
n N(n) N(n) ] : n n n n)T
S P R N 6.9)
see also Currie (1979). Hence the following matrix M™ is symmetric,
m_ T T [0 1 |1 0
M™ = IN", I—_1 0}, 1—{0 1l (3.6)

},Iow premultiply both sides of (3.3); by —iEITN"‘1 and add the complex conjugate quantity to obtain
E.-MME+E.-MME = 0. Assuming that the IAWSs vanish at great distance from the interface (é(c0) = 0),
integration between x, = 0 and x, = oo yields,

&(0) - M™E(0) = E(0) - IN"E(0) = 0. (37)

This relationship is valid for any type of anisotropy. Because of the Cayley-Hamilton theorem, it yields five
linearly independent equations for a 6 X 6 matrix N, and three equations for a 4 x4 matrix N, as here. Note
that for surface wave boundary conditions, the tractions are zero at x, = 0, and the relationship reduces to
(Taziev, 1989): w(0) - K™u(0) = 0. At n = 1,2, —1, the following expressions are found for M™,

Xy
M o —rg *1 Nee ’ (38)
L — 0 nyp ny
2rs(n — X)
—(14+mn)X 0
Mo = | : 3.9
ryt+rg —nes(n —X) 1o+ neX —2(na6 + renes) (3.9)
L 72l — ’126(’1 —X) 1y +npX  —nyp —rang — renys —2ranag
and
d
_ L | X[rarg + na(n — X)] a
M( 1) — 26 26 310
A X[I”él’lzz — 7"2”26] b c ’ ( )
e roFg + n26(17 —X) Tghoy — Falye  f
with 4 = det N and
a:(l—n%X)(n—X)—réX, b= —ry 4+ X(rangs — renzs),
c= —ny +X(n22n66 — I’l%G), (3 11)

di*X[l’%#’l’ng(l’[*X)], 6:7’%7”22(’77)()7
f = 2}"21”6}126 — I”%I’l% — I"él’lgz — (1’] 7X) (n22n66 — 1136).

Corresponding to the first effective boundary condition (2.5); is the interface acoustic mode IAW1, for
which the quadrivector £(0) is in the form,

£(0) = U,(0)[0,1,2,0]", (3.12)
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(say), so that Eqgs. (3.7) read

My + My (o +7) + M o = 0. (3.13)
Choosing in turn n» = —1, 1,2, an homogeneous linear system of equations follows,
a b c 1
X -1 Nee ao+o| = 0. (314)

0 e =+ I’lz()X —2(}’126 + V()n66) oL

Similarly, corresponding to the second effective boundary condition (2.5), is the interface acoustic mode
IAW?2, for which the quadrivector é(0) is in the form,

£(0) = U1(0)[1,0,0,4]", (3.15)
(say), so that Eq. (3.7) read

MY+ MY (o +7) + MY oz = 0. (3.16)
Choosing in turn n = —1, 1, 2, an homogeneous linear system of equations follows,
d e f 1
n—X ) —ny at+a| =0. (3.17)

27‘6(77—)() 7'21"(,—}’126(11—)() —2]"27126 ool

The secular equations for TAW1 and IAW2 correspond to the vanishing of the determinant of the 3x3
matrices given in (3.14) and (3.17), respectively. They are both cubics in X = pv?. For purposes of com-
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Fig. 3. Interface wave speeds in twinned crystals: leaky wave (upper solid) and Stoneley wave (lower solid); also included: quasi-bulk
shear wave (upper dashed) and Rayleigh wave (lower dashed). (a) Gallium arsenide; (b) Silicon.
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parison, recall that a homogeneous bulk wave propagates in the Ox; direction at a speed v, such that
X = pi? is root of the quadratic,

A =detN =0, (3.18)

and that a surface Rayleigh wave propagates over either half-space along Ox; at a speed vg such that
X = pv} is root of the quartic (Currie, 1979; Destrade, 2001; Ting, 2002),

d a X[r2r6 +}126(1’[ 7X)}
X —n X 0
2rs(n—X) 0 n—(1+nrnX

Il
e

(3.19)

Fig. 3 shows the influence of the twinning angle 6 upon the wave speeds, for (a) gallium arsenide and (b)
silicon. The respective elastic stiffnesses (10'° N/m?) and mass densities (kg/m?®) are (Royer and Dieulesaint,
1996): ¢;; = 11.88, ¢12 =5.38, ce6 =5.94, p =5307, and ¢;; = 16.56, ¢, = 6.39, ce6 = 7.95, p = 2329.
Similar comments apply to both crystals. The secular equation (3.17) corresponds to a non-physical leaky
wave TAW2 with a speed (upper full curve) which is always supersonic (always above the curve for the
speed given by (3.18) of a bulk shear wave (upper dotted curve)). The secular equation (3.14) corresponds to
a Stoneley wave IAWI1 with a speed (lower full curve) which is always larger than the speed of a Rayleigh
wave propagating in either half-space (always above the curve for the speed given by (3.19) (lower dotted
curve)).
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Appendix A

Here the effective boundary conditions (2.5) for twinned crystals are derived.
Solutions to the equations of motion (3.3) are in the form &(kx,) = &,e*2. By substitution, &, is found
from the adjoint matrix to N — pl as

&= lai, by, cidi], (A.1)
with

a; = [(1 + )X — nlp: + rareX + nas(n — X)X,

by = —Xp; — 2reXp; — [1 + r¢ + nes(n — X)IX +1,

¢; = p; + (r6 — naX)pi — ra(1 = neeX) — renxX,

d; = —p} = 2rep} + [rs — g — nes(n — X)|p; + nas(n — X) + rars.

(A.2)

Here p is a root of the characteristic polynomial det (N — p1) = 0, which is given explicitly by (2.2). For the
lower half-space, only the roots p;, p, with positive imaginary parts are kept in order to ensure decay away
from the interface x, = 0. Thus the solution for x, > 0 is

E(kxy) = Br&ge” ™ + BrEge ™, (A3)

for some constants f; and f,.
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In the upper half-space x, < 0, the p’s are changed to their opposite so that the roots of the characteristic
polynomial with negative imaginary parts are —p;, —p,. Moreover, rs and ny also change signs, so that the
eigenvectors &, are in the form,

E:} = [_ah bi7 Ci,y _di]T; (A4)
and the solution for x, < 0 is
E(kXZ) = Blzcl)eiiplkxz + Bzzoeiimm’ (A.5)

for some constants El and ﬁz.
It follows that the continuity of the displacements and of the tractions across the interface x, = 0 reads

Bi&y + Pr& = ,5\12(1) + E223~ (A.6)
This system of equations is re-written as

A A Bl

s Sl A7
where

bi b Bl +_|B
A= "2] B{‘ 2] {1} = |21 A8
AL S A S (A8

The determinant of the 4x4 matrix in (A.7) is 4det AdetB. It is zero when either (a) det A = 0, and then
Bp — Bp = 0yields g = B; or (b) det B =0, and then A + A = 0 yields p = —f. Incase (a), AB+ A =0
means Af = 0, that is

ul(O) == IZQ(O) = O; (A9)
in case (b), Bf — Bﬁ = 0 means B = 0, that is
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